Johnson Type Bounds for Mixed Dimension Subspace Codes
نویسندگان
چکیده
منابع مشابه
Johnson type bounds on constant dimension codes
Very recently, an operator channel was defined by Koetter and Kschischang when they studied random network coding. They also introduced constant dimension codes and demonstrated that these codes can be employed to correct errors and/or erasures over the operator channel. Constant dimension codes are equivalent to the so-called linear authentication codes introduced by Wang, Xing and Safavi-Nain...
متن کاملConstructions and bounds for mixed-dimension subspace codes
Codes in finite projective spaces equipped with the subspace distance have been proposed for error control in random linear network coding. The resulting so-called Main Problem of Subspace Coding is to determine the maximum size Aq(v, d) of a code in PG(v−1,Fq) with minimum subspace distance d. Here we completely resolve this problem for d ≥ v − 1. For d = v − 2 we present some improved bounds ...
متن کاملIsotropic Constant Dimension Subspace Codes
In network code setting, a constant dimension code is a set of k-dimensional subspaces of F nq . If F_q n is a nondegenerated symlectic vector space with bilinear form f, an isotropic subspace U of F n q is a subspace that for all x, y ∈ U, f(x, y) = 0. We introduce isotropic subspace codes simply as a set of isotropic subspaces and show how the isotropic property use in decoding process, then...
متن کاملAn improvement of the Johnson bound for subspace codes
Subspace codes, i.e., subset of a finite-field Grassmannian, are applied in random linear network coding. Here we give improved upper bounds based on the Johnson bound and a connection to divisible codes, which is presented in a purely geometrical way. This complements a recent approach for upper bounds on the maximum size of partial spreads based on projective qr-divisible codes.
متن کاملCombinatorial Bounds for List Decoding of Subspace Codes (Extended Version)
Codes constructed as subsets of the projective geometry of a vector space over a finite field have recently been shown to have applications as unconditionally secure authentication codes and random network error correcting codes. If the dimension of each codeword is restricted to a fixed integer, the code forms a subset of a finite-field Grassmannian, or equivalently, a subset of the vertices o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Electronic Journal of Combinatorics
سال: 2019
ISSN: 1077-8926
DOI: 10.37236/8188